Poisson Allocations with Bounded Connected Cells
نویسندگان
چکیده
Given a homogenous Poisson point process in the plane, we prove that it is possible to partition the plane into bounded connected cells of equal volume, in a translation-invariant way, with each point of the process contained in exactly one cell. Moreover, the diameter D of the cell containing the origin satisfies the essentially optimal tail bound P(D > r) < c/r. We give two variants of the construction. The first has the curious property that any two cells are at positive distance from each other. In the second, any bounded region of the plane intersects only finitely many cells almost surely.
منابع مشابه
On a class of nonlinear fractional Schrödinger-Poisson systems
In this paper, we are concerned with the following fractional Schrödinger-Poisson system: (−∆s)u + V (x)u + φu = m(x)|u|q−2|u|+ f(x,u), x ∈ Ω, (−∆t)φ = u2, x ∈ Ω, u = φ = 0, x ∈ ∂Ω, where s,t ∈ (0,1], 2t + 4s > 3, 1 < q < 2 and Ω is a bounded smooth domain of R3, and f(x,u) is linearly bounded in u at infinity. Under some assumptions on m, V and f we obtain the existence of non-trivial so...
متن کاملOn the distribution of typical shortest-path lengths in connected random geometric graphs
Stationary point processes in R with two different types of points, say H and L, are considered where the points are located on the edge set G of a random geometric graph, which is assumed to be stationary and connected. Examples include the classical Poisson–Voronoi tessellation with bounded and convex cells, aggregate Voronoi tessellations induced by two (or more) independent Poisson processe...
متن کاملALGEBRAS WITH CYCLE-FINITE STRONGLY SIMPLY CONNECTED GALOIS COVERINGS
Let $A$ be a nite dimensional $k-$algebra and $R$ be a locally bounded category such that $R rightarrow R/G = A$ is a Galois covering dened by the action of a torsion-free group of automorphisms of $R$. Following [30], we provide criteria on the convex subcategories of a strongly simply connected category R in order to be a cycle- nite category and describe the module category of $A$. We p...
متن کاملAn algorithm for envy-free allocations in an economy with indivisible objects and money
This paper studies envy-free allocations for economies with indivisible objects, quasilinear utility functions, and an amount of money. We give a polynomially bounded algorithm for finding envy-free allocations. Connectedness of envy-graphs, which are used in the algorithm, characterizes the extreme points of the polytopes of sidepayments corresponding with envy-free allocations. Classification...
متن کاملar X iv : m at h / 02 08 03 3 v 1 [ m at h . Q A ] 5 A ug 2 00 2 CLUSTER ALGEBRAS AND POISSON GEOMETRY
We introduce a Poisson variety compatible with a cluster algebra structure and a compatible toric action on this variety. We study Poisson and topological properties of the union of generic orbits of this toric action. In particular, we compute the number of connected components of the union of generic toric orbits for cluster algebras over real numbers. As a corollary we compute the number of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014